Python for Finance: Programming, Data, and AI Assistance
| Responsible | Rami Ben Omrane |
|---|---|
| Last Update | 11/07/2025 |
| Members | 1 |
-
Module 1 – Python Foundations3Lessons ·
-
Environment setup (Anaconda, Jupyter, VS Code)
-
Core syntax: variables, data types, loops, functions, OOP basics
-
Working with libraries: numpy, pandas, matplotlib
-
-
Module 2 – Financial Data & Analysis4Lessons ·
-
Importing data from APIs (Alpha Vantage, Yahoo Finance, FRED)
-
Time series analysis, returns, volatility, and moving averages
-
Portfolio metrics: Sharpe, Sortino, Drawdown
-
Regression & correlation for factor analysis
-
-
Module 3 – Prompt Engineering as a Coding Assistant4Lessons ·
-
Using ChatGPT & Copilot to generate and optimize code
-
Debugging and refactoring with AI feedback
-
Writing docstrings, documentation, and modular scripts via prompts
-
Building mini-projects with iterative prompting
-
-
Module 4 – Applied Financial Modeling4Lessons ·
-
Valuation models (DCF, multiples)
-
Backtesting trading strategies
-
Monte Carlo simulation for risk modeling
-
Automating dashboards and PDF reports
-
-
Capstone Project1Lessons ·
-
Build a Python investment analysis toolkit (data fetching, indicators, scoring, and reporting)
-